WHAT'S NEW IN LIGHTING?

Andy Kyker, LC, LEED GA Specification Engineer GE Lighting

Agenda

Lighting Legislation Update LED Basics LED Design Considerations LED Modules Zhaga LED Applications Fluorescent Ballasts

Lighting Legislation Update

Energy Policy & Conservation Act (EPCA) Fluorescent Ballast Energy Conservation Standards Ballast Amendments Effective Nov 14, 2014

Ballast EPCA Standards

Summary

- Covers T8 and T5 ballasts in addition to T12 ballasts
- □ Includes previously exempt residential & sign ballasts
- □ Input voltage between 120V and 277V and 60 Hz.
- New rules create a new ballast efficiency metric Ballast Luminous Efficiency (BLE) and method of measurement
- Requires an efficiency improvement in a significant number of today's fluorescent ballasts
- Exempted:
 - Dimming ballasts that dim to 50 percent or lower
 - > T8 magnetic ballasts for use in EMI-sensitive apps
 - Programmed-start ballasts operating 4-ft. medium bipin lamps below 140 mA (0.71 ballast factor).

Ballast EPCA Standards

Summary

New rules create a new ballast efficiency metric Ballast Luminous Efficiency (BLE) and method of measurement,

Requires an efficiency improvement in a significant number of today's fluorescent ballasts,

Compliance and reporting requirements.

Ballast Luminous Efficiency (BLE)

Metric & Method of Measurement Advantages

- Efficiency is the Performance parameter for NEMA Premium ballast program
- Removes lamp and photometric measurement variations and inaccuracies
- Allows accurate evaluation of high performance ballasts

ANSI/IES/ASHRAE 90.1 2010 Whole Building Ltg. Power Densities

• <u>2007 Watts/Sq. Ft.:</u>		• <u>2010 V</u>	
 Office Buildings: 	٠	0.9	
1.0	٠	0.99	

- Schools: 1.2
- 1.20 • Hospitals:
- Warehouses: 0.80

<u> Natts/Sq. Ft.:</u>

- -10%
- -17%
- 1.21 +0.8%
- 0.66 -17.5%
- 0.61 -39%
- Dormitories: 1.0 Source: Willard Warren, PE, FIES, LD+A, June, 2010, p. 21

Legislation impact through 2014

	Effected B	lulbs	Timing	Regulation	Primary Fixture	Example Eliminated Bulbs	Replacements Bulbs Available Now
	A 100 Medi Inclu	D-Watt um Base ides95W)	Can no longer manufacture 1/1/2012* inventory sellable until depleted	New efficiency standards for all 100-Watt general service bulbs: Maximum wattage 72-Watts Lumens (brightness) 1,490-2,600** Minimum life 1,000 hours		soft white 100	
descent	75 Medi (înclu	-Watt um Base ides71W)	Can no longer manufacture 1/1/2013* inventory sellable until depleted	New efficiency standards for all 75 -Watt general service bulbs: Maximum wattage 53-Watts Lumens (brightness) 1,050-1,489** Minimum life 1,000 hours	\square	soft white 75	
Incan		0-Watt Iedium & ermediate Base Iudes 57W)	Can no longer manufacture 1/1/2014* inventory sellable until depleted	New efficiency standards for all 60 -Watt general service/deco bulbs: Maximum wattage 43-Watts Lumens (brightness) 750-1,049** Minimum life 1,000 hours			
	40 Medi (incl)-Watt ium Base udes37W)	Can no longer manufacture 1/1/2014* inventory sellable until depleted	40 -Watt general service bulbs: Maximum wattage 29-Watts Lumens (brightness) 310-749**		Provide constants	
PAR	PAR BAR BAR BAR N >39 >39	PAR20 PAR30 PAR38 9-Watt	Can no longer manufacture 7/14/2012 inventory sellable until depleted	New lumen -per -Watt standards eliminate standard halogen bulbs. The legislation doesn't affect incandescent reflectors, PAR16, MR16 & GU10.	FF 64		
LFL	Т1 Т1 Т1 Т8	2 F34 F40 F96 F32 F96	Can on longer manufacture 7/14/2012 inventory sellable until depleted	New lumen -per -Watt standards eliminate most F40 and F96 T12 bulbs and some F32 T8 lamps. Linear fluorescent lamps less than 4ft aren't affected.			More options coming in 2012

* California will enact the new standards for general service bulbs 1 year earlier

** Lumen range is 25% lower for color-enhanced products like GE Reveal® light bulbs

Lighting Legislation

Department of Energy Regulations

July 14, 2012* – Linear Fluorescent Regulations

- 4' Fluorescent T12, T8, T5
 - Exemptions for Plant, Cov-R-Guard, Colored, High CRI, etc....
- 8' Slimline T12, T8
- 8' HO 800 ma T12, T8
 - Cold Temp. (CT) Exemption
 - (1500 ma NOT Regulated)
- U6, U3 T12; U6, U-1/5/8 T8

<u>July 14, 2012* – Halogen PAR</u>

• PAR38, PAR30, PAR20

*Last Date to Manufacture – Can Sell Inventory CA – Same Date as Federal

2012 Standard – Linear Fluorescent Lamps

LAMP TYPE	ССТ	LPW STANDARD
4' Medium Bi-Pin ≥25W	≤ 4500K	89
4' Medium Bi-Pin ≥25W	> 4500K and ≤7000K	88
2' U-Shaped ≥25W	≤ 4500K	84
2' U-Shaped ≥25W	> 4500K and ≤7000K	81
8' Slimline ≥52W	≤ 4500K	97
8' Slimline ≥52W	> 4500K and ≤7000K	93
8' High Output	≤ 4500K	92
8' High Output	> 4500K and ≤7000K	88
4' Min Bi-Pin T5 ≥26W	≤ 4500K	86
4′ Min Bi-Pin T5 ≥26W	> 4500K and ≤7000K	81
4′ T5 HO ≥49W	≤ 4500K	76
4′ T5 HO ≥49W	> 4500K and ≤7000K	72

2012 Standard – Linear Fluorescent Lamps Typical "4' " Lamp Types Covered

- F34T12, F40T12
- F28W/T5, F28/T5/WM, F54W/T5, F54/T5/WM
- F32T8, F32T8/HL, F32T8/WM, F28T8, F32T8/25W
- - 89 LPW
 - 32 Watts -> Min. 2850 Lumens
 - 30 Watts 🗲 Min. 2679 Lumens
 - 28 Watts 🗲 Min. 2500 Lumens
 - 25 Watts 🗲 Min. 2225 Lumens

Note: 2', 3' and 5' lamps not covered.

High Lumen 8' T12 High Output

Primary Application...

Most Commercial Spaces

Customer Message...

Energy efficient 8' T12 high output lamp design that meets the DOE minimum standards & runs on existing T12 HO ballasts... Product Performance...

Watts:	95W
Initial Lumens:	8,850
Mean Lumens:	7,920
CCT:	3000K & 4100K
CRI:	77
Rapid Start Life (3hrs):	12K
System Warranty:	None

High CRI 4' T12

Primary Application...

Most Commercial Spaces

Customer Message...

High CRI F34 T12 lamp design that complies with DOE requirements & runs on existing T12 ballasts... Product Performance...

	<u>CW/C</u>	<u>CX</u>		
Watts:	34W	34W		
Initial Lumens:	1,800	2,500		
Mean Lumens:	1,500	2,200		
CCT:	41	LOOK		
CRI:	;	87		
Rapid Start Life (3hrs):	15K	20K		
System Warranty:	None			

Rare Earth Phosphors Sources.

http://www.globalsecurity.org/military/world/china/rare-earth.htm

4' T8 Options

<u>Description</u>	<u>IS</u> (12hr/Start)	<u>PS</u> (12hr/Start)	<u>Initial</u> <u>Lumens</u>	<u>Mean</u> Lumens	<u>Color Temp</u> <u>K</u>	<u>CRI</u>
F32T8 SP(700)	~30,000	~36,000	~2700	~2440	3500K	75-78
F32T8 XL(XP) SP(700)	~36,000	~45,000	~2850	~2700	3500K	78
F32T8 SPP(800XV)	~30,000	~36,000	~2900	~2725	3500K	80
	~40,000	~42,000	~2900	~2725	3500K	83
F32T8 SPX(800)	~30,000	~36,000	~2925	~2800	3500K	85
F32T8 XL(XP) SPX(800)	~40,000	~45,000	~2925	~2800	3500K	85
F32T8 SXL SPX(800)	~40,000	~60,000	~2850	~2700	3500K	83-85

4' T8 Options

- •Lamp Platforms:
- •F32T8 HL "Super T8"
- •F32T8 SP/700(78) & SPX/800(86)
- •F28T8 = 28W
- •F32/25T8 = 25W at 4'

Energy Saving 4' T8 Fluorescent Lamps

LPW:

T5 Energy Savings...

I

Assumptions: \$.10 kwh, 30,000 hrs burn, Savings per one 54W T5 lamp

From DOE & NEMA

In 2001, lighting ~765 TWh electricity consumption. Equal to 22% of U.S. total.
In 2010, lighting ~700 TWh, 19% of total.
In 2001, ~6,977 million permanent lamps in U.S.
In 2010, ~8,203 million permanent lamps in U.S.

•LED lighting is expected to represent 36% of lumen-hour sales (general market) by 2020, and 74% by 2030

Benefits & Impacts

What are the benefits of LEDs?

LEDs offer a number of advantages over conventional light sources. LEDs...

CONTROL

...contain no mercury, lead, or glass ...offer significant energy savings, up to 90% compared to incandescent in traffic signals ...last for up to 50,000 hours

...are highly resistant to shock and vibration ...have excellent cold weather performance

...are dimmable ...have a quick turn-on time

How can LEDs impact us?

By the year 2030, the US Department of Energy estimates LED lighting could save approximately

190 HOURS OF per year, which is equivalent to:

the annual output of **24** LARGE POWER PLANTS (1000 MW) enough electricity to power 95 million HOMES and at today's prices \$15 billion

While traditional lighting technologies are relatively mature and offer less potential for improvement, SSL is still at a comparatively early stage and continues to achieve dramatic advances in efficacy.

Source: DOE SSL R&D Multi-Year Program Plan

DOE Life-Cycle Assessment

Figure ES. 1 Life-Cycle Energy of Incandescent Lamps, CFLs, and LED Lamps http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/2012_LED_Lifecycle_Report.pdf

ENERGY STAR® Program Start August 31, 2010

- EPA now in charge of LED ENERGY STAR® Program
 - DOE sign MOU Sept 30, 2009
 - Expand and enhance energy efficiency programs for products and buildings
 - Re-align roles to best utilize expertise of each agency
- DOE completed ENERGY STAR® LED specification
 - Formally communicated program on Dec 3rd
 - Goes in effect August 31, 2010
- EPA will manage changes going forward with technical support of DOE

Energy Star Qualification Summary Highlights

	Omnidirectional	Decorative	Directional	Non-Standard
Minimum Efficacy	< 10 watts: 50 LPW >or = 10 watts: 55 LPW	40 LPW	<or= 40="" lpw<br="" par20:="">> PAR20: 45 LPW</or=>	< 10 watts: 50 LPW >or = 10 watts: 55 LPW
Minimum Light Output	If claiming it replaces: 25W -> 200 lumens 35W -> 325 lumens 40W -> 400 lumens 60W -> 800 lumens See PDF for higher levels	If claiming it replaces: 10W -> 70 lumens 15W -> 90 lumens 25W -> 150 lumens 40W -> 300 lumens 60W -> 500 lumens	BR, ER, K & R: Luminous flux = target wattage of the replaced lamp X10 PAR and MR16 : see tool	200 lumens
Lumen Maintenance	>or = 70% (L70) at 25,000 hours	>or = 70% (L70) at 15,000 hours	>or = 70% (L70) at 25,000 hours	>or = 70% (L70) at 25,000 hours
Warranty		All types: 3 y	ear minimum	
Packaging	All type	s: Manufacturer mus	t use the Lighting Fac	ts label

ENERGY STAR® qualified LED lamp website

Commercial Products:

<u>http://www.energystar.gov/index.cfm?fuseaction=ssl.</u> <u>display_products_com_pdf</u>

Residential Products: <u>http://www.energystar.gov/index.cfm?fuseaction=ile</u> <u>dl.display_products_excel</u>

FTC Lighting Facts Label -Mandatory

Front ^

Back >

- Lumens
- Energy Cost per Year Based on \$11.4 / KW-Hr.

Brightness	8201	umens
Estimated Yearly Energy C Based on 3 hrs/day and 11.4 g Your cost will depend on your	cost ¢/kWh. rates a	\$7.49
Life in Years Based on 3 hrs/day.		1.4 yrs
Color Appearance Warm	С	001
Energy Used	60	0 watts

CALIPER testing from the Pilot Round through Round 11 shows a steady increase in average and maximum efficacy of market-available SSL luminaires and replacement lamps. The minimum efficacy seen in Round 11 is higher than the overall average efficacy observed in 2007.

Source: Caliper Round 11 Summary Report

LED Life Ratings

Traditional Lamps rated at B50 - 50% Mortality 100 Rated % LAMPS STILL BURNING Life 80 \circ 0 60 40 20 0 10 20 60 70 80 90 100 30 40 50 0 % Rated Life

B50 Life rated when 50% of a population has failed

 $\overline{B50} = Avg rated life$

LEDS rated at 70% Lumen Maintenance

L70 = Rated life @ 30% depreciation

LED Design Considerations

Dimming Considerations

Incandescent / Halogen Dimmers

Line-voltage tungsten filament lamps, including linevoltage (120 V) halogen lamps. Resistive in nature.

Rated for cold filament inrush. The leading edge cut dimmer keeps voltage at zero until it turns on. Red Line.

<u>Agenda</u>

Electronic (solid-state) transformer-supplied low-voltage lighting. Capacitive in nature. Neutral wire connection.

Very smooth turn on following the sine wave. Red Line ramps up.

<u>Agenda</u>

Reverse Phase Control / Trailing Edge Cut Dimmers

Complex Design

•Trailing dimmers are more complex and costly, but are easier on lamp filaments, as there is no sharp current step.

• Trailing cut dimmer are less likely to generate noise mechanical noise in the lamp filament or noise into the electrical system.

•Trailing edge cut dimmers turn on at zero crossing with each line cycle then turn off at the desired level.

Dimming Compatibility

Only bulbs designed as dimmable should be used on a dimmer. Otherwise life & performance will suffer.

Actual performance of any LED or other lamp family will vary from bulb type to bulb type and among different manufacturers.

Check the bulb, or package, or call the manufacturer.

PER UL Standard 1472, manufacturers must test each bulb to ensure its compatibility with the dimmers.

<u>Agenda</u>

Reduce Dimming Range

Incandescent/halogen bulbs will typically dim lower than CFL or LED bulbs. Most dimmable CFLs will dim down to 10% to 30% measured light output. Early versions of dimmable LEDs on the market have the ability to dim lower than CFLs and can reach levels as low as 5% to 15% measured light. The actual dimming range is dictated by the bulb's circuitry.

How to calculate wattage when mixing lamp types: (example only)

Total CFL/LED Wattage Installed

Incandescent/Halogen Wattage

Maximum Allowable

Example 1:

- I have a single-gang dimmer and 3 CFL bulbs that are 16 W each, totaling 48 W.
- Because I have 48 W of CFL bulbs installed, I can have up to 400 W of incandescent bulbs also controlled by this dimmer (6 incandescent bulbs that are 65 W each = 390 W)

3 CFL bulbs x 16 W each = 48 W 6 Incandescent bulbs x 65 W each = 390 W (Please note this example applies to a single-gang dimmer only)

Single-Gang	Total CFL/LED Wattage Installed		Maximum Allowable Incandescent/Halogen Wattage
	ow	+	600 W
	1-25 W	+	500 W
	26-50 W	+	400 W
	51-75 W	+	300 W
	76-100 W	+	200 W
	101-125 W	+	100 W
	126-150 W	+	ow
2-Gang	Total CFL/LED Wattage Installed		Maximum Allowable Incandescent/Halogen Wattage
	ow	+	500 W
	1-25 W	+	400 W
	26-50 W	+	300 W
	51-75 W	+	200 W
	76-100 W	+	100 W
	101-125 W	+	50 W
~	126-150 W	+	0 W
3-Gang	Total CFL/LED Wattage Installed		Maximum Allowable Incandescent/Halogen Wattage
	ow	+	400 W
	1-25 W	+	300 W
	26-50 W	+	200 W
	51-75 W	+	100 W
	76-100 W	+	50 W
	101-125 W	+	0 W
	126-150 W	+	0 W

Technical Support Center 1.800.523.9466 Customer Service 1.888.LUTRON1

In-Rush Current

Inrush current can be 10 times greater than steady-state current.

<u>Agenda</u>

LED Modules

Infusion is a completely tool free, interchangeable modular system

Twist-in Optic

Twist-in LED Module

Holder

Assembled System

Infusion Applications

Competitive Comparison

Parameter	GE Infusion Gen2	Xicato XSM	Philips Fortimo SLM	Philips Fortimo TDLM	Cree LMH2	Osram PrevaLED HD	Bridgelux Helieon
Picture							-
Installation	Twist-in	Screw down	Screw down	Twist-in	Screw down	Screw down	Twist-in
Lumens	Up to 3,500	Up to <mark>2,000</mark>	Up to 3,000	Up to <mark>2,000</mark>	Up to 1,250	Up to 3,000	Up to 1,200
Lm per watt	Up to 70	Up to <mark>64</mark>	Up to 85 * @ 500 mA	Up to <mark>62</mark>	Up to 80	Up to 84	Up to <mark>59</mark>
Color Temps	27 / 30 / 40	27/30/35/ 40	27/30/35/ 40	27 / 30 / 40	27/30/35/ 40	27/30/35/ 40	30/41
CRI	Up to 87	Up to 95	Up to 95	Up to <mark>80</mark>	90	Up to 90	Up to <mark>82</mark>
Color Consistency	4 / 2-step	2-step	4 / 3-step	5 / 6-step	3-step	3-step	3-step
Size (dia.)	70 mm	45 mm	50 mm	75 mm	88.2 mm	50 mm	80 mm
L70 Life	50,000 hrs	50,000 hrs	50,000 hrs	25,000 hrs	50,000 hrs	50,000 hrs	50,000 hrs
Zhaga	Book 5	No	Book 3	Book 2	No	Book 3	No

This information is based on data publicly available at the time of printing. GE and competitor product offerings may change at any time

Zhaga

What is Zhaga?

• Zhaga is a consortium (group) of LED industry players, including : LED module manufacturers, LED luminaire manufacturers, and LED accessory component (i.e. heat sinks, optics) manufacturers.

Zhaga's role:

- Zhaga **promotes the interchangeability of LED modules** by specifying their interfaces and enabling easy identification of Zhaga compliant products.
 - Mechanical, Photometrical, Thermal, Electrical

Zhaga's purpose:

- Creates market confidence in LED lighting solutions which **stimulates the growth of the application of LED's**
 - *i.e.* Speed up adoption and grow the market for LED modules quickly.

Zhaga is a cooperation between companies

- 167 members
- 55 members with voting rights
- From Asia, North America, Europe
- Companies you recognize such as:
- Acuity, Cooper, Zumtobel, Iguzini, Ideal, Leviton, BJB, Lutron, GE, Osram, Philips, Panisonic, Ideal, Nuventix, Cree

Meeting every 6-8 weeks

Zhaga

- Zhaga will create many light engine specifications
- Different lighting applications need different light engines
- Zhaga specifications are called "books"

Book No.	Book 1	Book 2	Book 3	Book 4	Book 5	Book 6	Book 7
Description	Overview and Common Information	Socketable module with integrated driver	Screw-down module with separate driver	Street light module	Socketable module with separate driver	Large socketable module with integrated driver	Office module with separate driver
Picture	N/A			N/A			N/A
Status	Complete	Complete	Complete	In preparation	Complete	Complete	In preparation

Defining an LED light engine

• An LED light engine is the combination of an LED module and its associated

rol gear ('driver')

Light Engine with Integrated Control Gear

Light Engine with Separate Control Gear

Stable interfaces – Rapid innovation

• Zhaga specifies *only* what is necessary to enable the *interchangeability* of light engines from different manufacturers.

• The design freedom inside the light engines and in the luminaires is maximized.

Zhaga treats the inside of a light engine as a 'black box'

LED Applications

Fluorescent Ballasts

Fluorescent Ballast Products

MultiVoltage
T12 & T8
Instant Start
Reduce Stock
Reduce LaborMagnetic T12
Old Technology
Low Efficiency
< 30% THD
Large Can Size
High HeatMultiVoltage
T12 & T8
Dedicated
Voltage

rice

<u>Premium</u> <u>Ballast</u>

High Efficiency Multi-Voltage Anti-Striation Class CC Arc

Program Start T8 & T5 Premium For Frequent Switching >100,000 cycles Multi-Voltage Premium Efficiency Parallel or Series????

Performance Features

Instant Start Ballast

NEMA LSD 2A-2007

- Parallel Wired, lamp goes out, the other stays on.
- One wire to Shunted sockets.
- 550 Volts Open Circuit Voltage
- Cathodes Not heated. High OCV to start lamps.
- Good for long cycles of starting 1-2 times per day.
- Lamp types: F32T8, F28T8, F25T8, F96T8.

Programmed Start Ballast

- Similar to Rapid Start, but Programmed Precise Control
- Cathodes heated without Arc Voltage
- Damaging "Glow Current" near Zero !
- Less damage during starting = Longer lamp life at short cycles
- Used with dimming technology

Options for Reducing Lighting Loads

Options:

1 Switching

Fixture Switching (rows) Fixture Switching (checkerboard) Tandem Wiring (inboard/outboard)

2 Stepped Dimming ~50-60%

2 hot leads/2 switches, switching logic) 0-10V Powerline Carrier

Load Shed Dimming 100 to 60%

4

0-10V Analog Powerline Carrier DALI 0-16V Digital)

Full Range Dimming 100~3%

0-10V Analog Powerline Carrier or Phase Cut DALI 0-16V Digital)

T8 vs T5 Efficacy For Office Environment										
		<u>Initial</u>	<u>Maintained</u>				<u># Fixtures</u>			<u>Mean</u>
<u>Luminaire</u>	<u># Lamps</u>	<u>Lumens</u>	<u>Lumens</u>	<u>BF</u>	<u>LLF</u>	<u>Watts</u>	Required	Footcandles	Watts/Ft Sq	Lum/Watt
T5 Perforated Basket	2-51W	5000	4600	1.00	0.76	107	10	53.6	1.34	85.98
T5 Perforated Basket	2-28W	2900	2660	0.96	0.73	59	15	47.0	1.11	86.56
T8 Perforated Basket	3-32W	2950	2800	0.89	0.78	84	12	48.6	1.26	89.00
T8 Perforated Basket	3-32W	2950	2800	1.15	1.00	108	10	53.0	1.35	89.44
T8 Perforated Basket	3-28W	2725	2562	1.10	0.96	91	12	55.2	1.37	92.91
T8 Perforated Basket	3-28W	2725	2562	1.10	0.96	91	10	47.0	1.14	92.91
T8 Perforated Basket	3-32W	3100	2915	0.89	0.77	84	10	53.6	1.05	92.66
T8 Parabolic	3-32W	2950	2800	0.89	0.78	84	10	58.3	1.05	89.00
T8 Parabolic	3-32W	3100	2915	0.89	0.77	84	8	49.0	0.84	92.66
Design based on the r	number of fix	tures requi	red to provide 5	0 footcandl	es at a 2.5'	workplan.	Room dime	nsions 40' x 20	' x 9'.	
Based on ambient terr	perature of	77 deg.								
The Most Efficacious	System?	Typically	the T8 lamp is	s more effi	cient but i	t does dep	end on the	lamp/ballast	system.	
		As can be	seen, the 310)0 lumen 3	2W T8 and	the 28W	T8 are more	e efficient tha	n the 2950 lu	men
		32W T8 a	nd the 51W T5	5. The 28V	T5 does v	very well b	out requires	s more lumina	ires.	
		If you con	sider the T8 i	n a parabo	olic lumina	re, the 310	00 lumen 32	2W T8 really s	tands out.	
Note 1: Many people simply look at the lumens/watt figure. I prefer to calculate the watts/ft sq because this really shows you how much								uch		
energy is goin	g to be real	uired to get	the desired res	ults.					-	
2: GE has a 51	N T5 that ha	as the same	e lumens as ev	eryone's 54	W lamp. T	his actually	helps the T	5 come closer	to the T8.	

THANK YOU!

QUESTIONS?